

SEE beyond with

INTENSITY | ADVANCED FULLRANGE OPTICS

Technology and initial clinical experience

Prof. Ehud I. Assia

Director, Center for Applied Eye Research Department of Ophthalmology, Meir Medical Center, Kfar-Saba Ein-Tal Eye Center, Tel Aviv, Tel- Aviv University, Tel-Aviv ISRAEL

INTRODUCTION

- The RINTENSITY is a part of the FullRange family of premium products.
- The lens is designed using a unique algorithm Gerchberg–Saxton algorithm along with Hanita merit function (GSH) to optimize diffractive optics.
- The GSH was implemented in the advanced Arizona eye model used in all Hanita Lenses premium lenses.

INTRODUCTION

• Optimization in the GSH was aimed to <u>maximize</u> light <u>intensity</u> utilization in order to get clear vision throughout the range of functional vision between 40 cm to infinity.

INTRODUCTION

Phase

Lenses

SEE beyond with Hanito JLLRANGE R

LENS SPECIFICATION

Technology/Design	Intensity optimized GSH algorithm
Diffractive area	5.2 mm
Geometry	posterior surface: Aspheric –Diffractive Anterior surface: Spheric
Optic type	Zone pupil optimized lens
Refractive index	1.46
Spherical Aberration	-0.13µ
Material	25% Hydrophilic Acrylic
Lens Color	Natural Yellow Violet Filter

Lens Foci

Focus	Addition @ IOL plane	Addition @ spectacle plane	Distance [meter]
Far	0	∞	∞
Far Intensifier	0.9 D	0.75 D	1.33 m
Intermediate	1.5 D	1.25 D	0.80 m
Near intensifier	2 D	1.67 D	0.60 m
Near	3 D	2.50 D	0.40 m

Light Intensity Distribution

Light Intensity Distribution

EYE PUPIL APERTURE OPTIMIZATION

SEE beyond with

Lenses

- All zones are optimized by GSH
- Zone smooth shapes allow higher efficiency in desired target intensity
- Multiple areas allow better performance for different eye pupil apertures
- Higher MTF at Far Vision for large
 Eye Pupil

DIFFERENCE BETWEEN ZONES

The difference between zones will modify the intensity distribution at each foci

Lenses

THROUGH FOCUS RESPONSE

FarInfinityFar intensifier+0.90Intermediate+1.50Near intensifier+2.0

LOWEST ENERGY LOSS 40% decrease in lost light >> decreased visual disturbances

D cm	0 0	0.25 480	0.5 240	0.75 160	1 120	1.25 96	1.5 80	1.75 69	2 60	2.25 53	2.5 48	2.75 44	3 40	3.25 37
INTENSITY														
Panoptix														
Finevisior														
At Lisa Tri														

US AIRFORCE TARGET – 3 MM PUPIL

HALO ESTIMATION

CLINICAL STUDY

OBJECTIVES

PRIMARY AIM:

To evaluate the monocular & binocular visual acuity for far, intermediate and near distance after the INTENSITY implantation.

SECONDARY AIM:

To measure the defocus curve and patient satisfaction.

STUDY DESIGN

This study is a prospective, single arm, single center, open label study.

The aim of this study is to evaluate safety and performance of the INTENSITY IOL.

Population: Men and women diagnosed with cataract who require cataract surgery procedure that meet the inclusion criteria.

INCLUSION CRITERIA

Age over 45 years and under 75 years.

Patients with bilateral age related cataracts, require bilateral cataract phacoemulsification combined Intraocular Lens implantation;

Patients with axial length of 22-24.5mm.

Normal corneas with less than 0.75D of regular corneal astigmatism. Post-operative best corrected visual acuity projected to be 0.3 logMAR or lower.

Patient motivated for multifocal IOL after screening by surgeon.

Fundus visualization is possible.

Absence of retinal or optic nerve diseases

ENROLLMENT

Study status

Hanita R FULLRANGE Lenses

PRE OPERATIVE BIOMETRY &VA

Parameter	Average				
SE [D]	-0.26				
UDVA [LogMAR]	0.41				
CDVA [LogMAR]	0.11				
K1 [D]	44.14				
K2 [D]	44.63				
Cyl [D]	-0.49				
AL [mm]	23.14				

Spherical Equivalence 1 month post op

VISUAL ACUITY 1 MONTH POST-OP - UNCORRECTED

Uncorrected: Distance – Intermediate - Near

VISUAL ACUITY 1 MONTH POST-OP - CORRECTED

Corrected: Distance – Intermediate - Near 0,30 0,20 6 / 8.3 0,10 6 / 6.1 6 / 4.2

VISUAL ACUITY 1 MONTH POST-OP - CORRECTED BOTH EYES

Corrected VA-OU: Distance – Intermediate - Near

DEFOCUS CURVE Defocus curve

Defocus [D]

CONTRAST SENSITIVITY

Contrast sensitivity

FUNCTION AND SATISFACTION Difficulty to do tasks; 3 months N=2

Score per patient

FUNCTION AND SATISFACTION

Visual phenomenon

Difficulty in color perception Difficulty in depth perception Difficulty seeing at night Diplopia (Both eyes) Diplopia (one eye) Glare Halos **Blurry NEAR vision Blurry DISTANCE vision**

Severe

SEE beyond with

Lenses

١GE

FUNCTION AND SATISFACTION

FUNCTION AND SATISFACTION

Satisfaction

Are you satisfied from the treatment in your general feeling

Would you go over the treatment again?

SUMMARY

- A promising new lens design that may truly provide a good depth of focus and spectacle freedom to presbyopic patients.
- Initial results show a remarkable defocus curve that, with exceptionally good near and intermediate vision, with visual acuity above 0.05 (6/6.7) throughout infinity to 40 cm.
- High Patients satisfaction.
- Still requires to evaluate a need to adjust the A-constant of the lens from the approximated constant with which the study initiated.

